
Enhanced Incomplete Factorizations
Algorithms for Solving Circuit Modeling

Problems

Michael A. Heroux

Numerical and Applied Mathematics Department

Sandia National Labs

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

Collaborators in This Work

� Trilinos Team:
� David Day: Preconditioners and orderings.
� Kevin Long: Abstract classes, aggregate

preconditioners.
� Xyce Team:

� Rob Hoekstra: Parallel data re-distribution.
� Scott Hutchinson: Adaptive solver strategies.

Outline

Part 1: Adaptive Solver Strategies.
� Solver Overview and Strategies.
� Preconditioners focus.
� Results.
Part 2: TSF classes for aggregate preconditioners.
� Overview.
� Components.
� Availability.

� Sandia�s multifaceted solver project.
� Encompasses efforts in these solver

areas:
� Linear (AztecOO, Komplex).
� Preconditioners (ML, IFPACK).
� Eigen (Anasazi).
� Nonlinear and time dep (NOX).

� Petra matrix/vector classes:
� All Trilinos solvers use Petra objects.
� Solver components compatible,

interoperable.

� Versions of Petra, AztecOO,
Komplex, ML, IFPACK and NOX
are available (under LGPL).

� AztecOO, Petra, IFPACK in:
� Sierra, Xyce, Goma/Aria.
� Others: TAO, Sundance,�
� Available via ESI, FEI, CCA.

� ML: In ALEGRA, others.
� NOX: In MPSalsa, Xyce, FEAP,

Salinas, Sierra, Goma/Aria.

� More information:
http://www.cs.sandia.gov/Trilinos

About Trilinos1 Trilinos Status

� TSF: Abstract Framework
� Powerful aggregation

capabilites.
� Facilitates external

component integration.

1Trilinos, pronounced tree-lee-nose, is
a Greek word that, loosely translated,
means a �string of pearls�.

Trilinos Snapshot

Basic Solver Strategy

� Domain decomposition:
� Overlapping additive Schwarz.
� Problems with dense rows.

� Scaling of entries.
� Typically row sum scaling.
� Want to explore asymmetric row/col scaling.

� Stabilized incomplete factorizations on subdomains.
� Primarily use ILUT on matrix B, where:
� B is dual threshold a priori diagonal perturbation of original matrix

A.
� Non-restarted GMRES.

� Classical GS with refinement.
� Scalable, very robust, potentially expensive.

Motivations for This Approach

�Heritage of writing solvers for CFD apps.
� Want to leverage that investment.

�Direct sparse solvers are a problem:
� Serial solvers are OK (not great).
� Distributed memory solvers are problematic:

� Third party codes are not well-supported (realize this
point is contentious).

� Little incentive to develop in-house expertise.
� Most issues are related to software reliability,

extensibility and maintainability.
�Machinery is just coming into place to
implement KKT preconditioners.

Other Ideas Considered and Considering
� Textbook ILU and related preconditioners.

� Failed.
� Sub-optimal iterative methods (e.g., Bi-CGSTAB).

� Unreliable convergence.
� Column Reordering (Duff-Koster):

� Used to find better pivots for ILUT.
� Worked some times, but not as well as current

approach.
� KKT preconditioners.
� Serial or moderately parallel direct solvers, even

when running on many processors.

Preconditioned Krylov Solvers:
Sources of Robustness Difficulties

� In our experience iterative solvers fail for two
primary reasons:
� Preconditioner is too weak:

� Iterative methods stagnates or diverges.
� Note: For large parallel computers this can often be fixed by

increasing the fill of the factors. (But larger fill can lead to
second type of problem�)

� Preconditioner is too ill-conditioned:
� We often find that tough problems need large-fill ILU factors.
� However, these factors are often extremely ill-conditioned.

Ill-conditioned Factors

Ill-conditioned factors come from two major
sources:
� Source 1: Well-conditioned, poorly ordered

matrices.
� These matrices are not poorly conditioned.
� May have zero diagonal entries.
� Problem: Straight-forward incomplete factorization

implementations suffer.
� Factorization fails (zero pivot).
� Factors are poorly conditioned.

� Remedy: Can usually be fixed with proper matrix
reordering, either a priori or dynamic.

� Used Duff-Koster here with some improvement.

Ill-conditioned Factors (cont)

� Source 2: Truly ill-conditioned problems.
� Regardless of ordering or scaling, factorization of

user matrix is ill-conditioned.
� Observations (general):

� Large-fill incomplete factorizations of ill-conditioned
matrices will almost invariably be ill-conditioned.

� In this case, the more accurate the factorization is the
more ill-conditioned it is.

� Remedy:
� First we need to detect the problem.

� At the completion of the factorization, compute a
condition number estimate.

Estimating Preconditioner Accuracy

� Applying an ILU preconditioner involves solving a
lower/upper triangular system LUy = x:

Solve Lz = x.
Solve Uy = z.

� The accuracy of this calculation is a function of:
� Machine Precision = 2-53 ≈ 10-16.
� Condition number of the operator (M = LU in this case).
� Cond(M) approaching 1016 means useless result.

mach

�
 cond ()

x x
M

x
δ

−
≈

Lower Bound on Inf-norm Condition Number

$ $

$

1

1

1
|| || 1

1

1

() || || || ||
 || ||
 max || ||

 || || , (1,1,...,1)

 || () ||

x

T

cond M M M
M

M x

M x x

LU x

∞

−
∞ ∞ ∞

−
∞

−
= ∞

−
∞

−
∞

=

≥

=

≥ =

=
� Idea (not new):

� Form vector x of all 1�s.
� Call standard solve routine to find y s.t. LUy = x.
� Find max abs value of y values.

� Result: A reasonable approximation for cond(LU) writing almost
no extra software.

Remedies for Ill-conditioned Factors

� First: Detect problem:
� condest() method computes lower bound on condition number.
� condest() = 0 means unusable factorization: NaNs present.
� condest() > threshold then declare factorization �bad�.

� Next: Given bad factorization, attempt to make better:
� Define a modification of the original matrix that is better conditioned.

� Modified matrix is �nearby� original matrix. Compute and use factorization of
modified matrix.

� Block matrix partitioning can help (not used for circuit problems).
� We have block diagonal pivots.
� Invert the blocks, thus use pivoting within the block.
� Use SVD on block diagonal pivots.

A priori point diagonal perturbations

� Idea: Compute ILU factor of a matrix B that is
�nearby� original matrix A, but better
conditioned. (Generalization of Manteuffel shift)

� Sets up a continuum of preconditioners between
accurate but poorly conditioned ILU factor and
Jacobi scaling.

� B differs from A only
on diagonal:

� Forces:

sgn() (1)ii ii iib a aα ρ= + +

| |
| | (1) | |
ii

ii ii

b
b a

α
ρ

≥
≥ +

Choosing thresholds

� Now issue becomes: What values to pick for
thresholds.
� Too small: ILU factors are garbage.
� Too large: Perturbed factors are poor

approximations to original matrix.
� Answer: It�s still an art.
� Partial solution: Semi-automated adaptive

procedures.
� Ongoing work�.

AdaptiveIterate() Method
// Recompute prec if Krylov subspc ill-conditioned

while (curTrial<NumTrials &&
(illConditioned || breakdown)) {

SetNextThresholdPair(curTrial);
ConstructPreconditioner(condest); curTrial++;
Iterate(MaxIters, Tolerance);
NumSolveAttempts++;
if (!(oldResid>newResid)) X_ = Xold;

}

// Check for other failure exit states, fix if possible

if (lossOfOrthogonality)
Try to solve one more time only�

else if (maxits) Try more robust preconditioner
if (fill<curMaxFill)

double amount of fill, reset curTrial = 0;
else if (drop tolerance >0)

set drop tolerance = 0.0; curTrial = 0;
else if (kspace<curMaxKspace)

double kspace and try again

} // End of Master �while� loop

AdaptiveIterate(int MaxIters,
int MaxSolveAttempts,
double Tolerance)

// Master "while" loop
while (!normalStop &&

NumSolveAttempts<MaxSolveAttempts) {

//Find preconditioner with condest < threshold

while (curTrial<NumTrials &&
condest>=condestThreshold) {

SetNextThresholdPair(curTrial);
ConstructPreconditioner(condest); curTrial++;

}

// Try solver now

Iterate(MaxIters, Tolerance);
NumSolveAttempts++;

If (!(oldResid>newResid)) X_ = Xold;

Test Problems

� RHP:
� Eqs:25187
� NNZ:258265

� Hutch3:
� Eqs:32634
� NNZ:153390

Platform: Beowulf Cluster

Cluster specs:
� 8 nodes.
� Each node:

� Uni-processor 1.4 GHz Athlons.
� 1 GB DDR RAM.

� 100 Mbit/s network switch.
� Redhat Linux 7.1.
� GCC compilers.
� LAM MPI.

Solvers
� SuperLU:

� Standard Serial Distribution.
� Minimum Degree Reordering (AT + A pattern).

� AztecOO:
� ILUT(r,d).

� r � ratio of fill applied row-by-row. r = 1.0.
� d � drop tolerance. d = 0.01.

� Non-restarted GMRES, classical Gram-Schmidt with
refinement.

� AztecOO with AdaptiveIterate Method:
� Same as AztecOO but adapt to problems.

Results (Time in secs)

8.60.060.398.1Hutch3

14.40.188.75.2RHP

TotalSolve TimeFactor TimeReordering TimeProblem
SuperLU

0.121.02 (10-8)10-2Hutch3

N/A1.0NC (NaNs)0.0Hutch3

0.161.03 (10-12)10-2RHP

TimeFillIters (Res)Drop ToleranceProblem
AztecOO

Adaptive Results:
Hutch3 (last case above)

Set

α= 10-12

Action

0.23

Time

Condest not <
Condest thresh

None0.0 (NaNs
in factor)

Converge3 (10-8)109

ResultIters (Res)Condest

Note that matrix is singular (as is RHP):

superlu aztecoo

8

 || || 10.4
|| || 10

x x x

x
A x −

∆ = −

∆ =

∆ =

Parallel Adaptive Results
(Hutch3: 2 and 8 PEs)

Set ρ = 10-2Hessenberg
Ill-conditioned

3 (100)1012

Set α = 10-12

Action

0.55

Time

Condest not <
Condest thresh

Noneinf

Converged11 (10-7)105

ResultIters (Res)Max Condest

Set ρ = 10-2Hessenberg
Ill-conditioned

1 (100)1012

Set α = 10-12

Action

0.35

Time

Condest not <
Condest thresh

Noneinf

Converged10 (10-7)102

ResultIters (Res)Max Condest

AdaptiveIterate Summary

� ILUT/GMRES can be effective for Xyce
problems.

�Unpredictable behavior is chronic issue.
�Use of simple adaptive methods can
minimize user intervention incidents.

� Issue becomes even more important in
parallel.

Trilinos Solver Framework (TSF)

� Epetra, AztecOO, Ifpack, ML, etc.
PETSc, SuperLU, Hypre, HSL,
ScaLapack

� TSF is an abstract class hierarchy:
� Provides uniform API to solvers.
� Allows integration of many solvers via

implementation of abstract classes.
� Provides compositional classes.

� Similar to HCL.

Lots of good solver
components available

Sample TSF Class Category: TSFLinearOperator

Constructors
TSFLinearOperator ()

empty ctor constructs a null linear operator.

TSFLinearOperator (TSFLinearOperatorBase *ptr)
create a TSFLinearOperator from a pointer to a subtype.

Introspection methods
const TSFVectorSpace& domain () const

return domain space.

const TSFVectorSpace& range () const
return range space.

bool isZeroOperator () const
am I a zero operator?

Block structure information
int numBlockRows () const

get the number of block rows.

int numBlockCols () const
get the number of block columns.

TSFLinearOperator getBlock (int i, int j) const
get the (i,j)-th submatrix of a block operator.

TSFLinearOperator& setBlock (int i, int j, const
TSFLinearOperator &sub)

set the (i,j)-th submatrix of a block
operator

Application of forward, inverse, adjoint,and
adjoint inverse operators

void apply (const TSFVector &arg, TSFVector &out) const
apply the operator to a vector.

void applyInverse (const TSFVector &arg, TSFVector &out) const
apply the operator's inverse to a vector.

void applyInverse (const TSFLinearSolver &solver, const TSFVector
&arg, TSFVector &out) const

apply the operator's inverse to a vector, using the specified
solver.

void applyAdjoint (const TSFVector &arg, TSFVector &out) const
apply the operator's adjoint to a vector.

void applyInverseAdjoint (const TSFVector &arg, TSFVector &out)
const

apply the operator's inverse to a vector.

void applyInverseAdjoint (const TSFLinearSolver &solver, const
TSFVector &arg, TSFVector &out) const

apply the operator's inverse to a vector, using the specified
solver.

LinearOperator and LinearOperatorBase

� TSFLinearOperator:
� Has smart pointer to

TSFLinearOperatorBase class.
� Concrete class, but all methods

implemented via identical
methods in base class
implementation.

� Advantages:
� Memory management

transparent.
� Can use Matlab-like notation.

� Disadvantage:
� Must manually maintain mirror

set of methods.

Some LinearOperator Implementations

� Concrete Implementations:
TSFPetraMatrix (const TSFVectorSpace &domain, const TSFVectorSpace &range)

� Aggregate Implementations:
TSFComposedOperator (const TSFLinearOperator &left, const TSFLinearOperator &right)
TSFInverseOperator (const TSFLinearOperator &op, const TSFLinearSolver &solver=TSFLinearSolver())
TSFSumOperator (const TSFLinearOperator &left, const TSFLinearOperator &right, bool subtraction=false)

Other Primary TSF Classes

� All Primary TSF classes follow similar model:
� User class with smart pointer attribute.
� Shadow base class.
� One or more implementations of base class.

� Primary classes:
� Vector Space.
� Linear Operator.
� Vector/MultiVector.
� Linear Problem.

Aggregate Operator Construction

� TSF facilitates implicit (and explicit) construction
of operators:
� Partitioned (block):

� Composite:

� Sum:

� Inverse:

� Others: Zero, Identity, Transpose, �
� Recursively.

0
F B

A
C
 

=  
 

A B C= o

1 & ()A A solver A− =

A B C= +

Aggregate Construction of Other Classes

y
x

z
 

=  
 

� Block Vectors/MultiVectors:

� Implicit Vectors/Multivectors:

� Multi-tolerance stopping criteria:

x Ay=

()1 2
0

|| |||| || &
|| ||
rr
r

α α
 

< < 
 

Block Preconditioner Tools

0

A
F B x b
C y c
     

=     
     

64748

� Many systems are of the form:

� Note that:

� Precondition by:

1
1

0
 ,

0 0
F B I F B

S CF B
C CF I S

−
−

     
= = −     

     

31 2

1

1

1 00
0 0 00

where
- is your favorite preconditioner for .
- is something special.

F F

S S

F

S

PP P
IP B I BP

P I PI

P F
P

−

−

−    −   
=      

      

647486474864748

31 2

10 00 S

PP P

I PI −
    

647486474864748

Forming for using TSF1 00F
II BP −    − 
    

F B 
0

A

C 
 

64748

KKTRightPreconditionerFactory::createPreconditioner(const TSFLinearOperator& A) {

TSFLinearOperator F = A.getBlock(0,0); // Pointer to upper left block of A
TSFPreconditionerFactory pf = new ILUKPreconditionerFactory(1); // IFPACK parallel ILU(1)
TSFPreconditioner fp = pf.createPreconditioner(F);
TSFLinearOperator Finv = fp.left();

TSFLinearOperator B = A.getBlock(0,1); TSFLinearOperator C = A.getBlock(1,0);

TSFLinearOperator I00 = new TSFIdentityOperator(F.domain());
TSFLinearOperator I11= new TSFIdentityOperator(Bt.domain());
TSFLinearOperator Sinv = new TSFSomethingSpecial(C,A,B); // Schur compliment approximation

TSFLinearOperator P1 = new TSFBlockLinearOperator(A.domain(), A.range());
TSFLinearOperator P2 = new TSFBlockLinearOperator(A.domain(), A.range());
TSFLinearOperator P3 = new TSFBlockLinearOperator(A.domain(), A.range());

P1.setBlock(0, 0, Finv); P1.setBlock(1, 1, I11);

P2.setBlock(0, 0, I00); P2.setBlock(0, 1, -B); P2.setBlock(1, 1, I11);

P3.setBlock(0, 0, I00); P3.setBlock(1, 1, Sinv);

return new GenericRightPreconditioner(P1*P2*P3);
}

Conclusions

� Direct solvers are essential but problematic:
� No internal expertise (hard to justify).
� How to develop/support special features in 3rd party codes?
� Distributed solvers are (so far) unsatisfactory.

� Careful use of preconditioned Krylov methods can be useful:
� Textbook varieties will fail.
� Dealing with ill-conditioned factors is essential.
� Good parallel robust GMRES is important.
� Some kind of adaptive strategy seems essential.

� Aggregate preconditioners are next area of study:
� Tools are in place.
� Hope to learn about possible formulations at this meeting.

Trilinos and the Outside World
� ESI (Equation Solver Interface):

de facto standard solver interface.
!Epetra and AztecOO provided the first ESI-compliant implementation

(thanks to Alan Williams).
� TAO (Toolkit for Advanced Optimization):

Argonne optimization package.
!Epetra/AztecOO are being used (via ESI interface) for TAO solver

services, along with PETSc implementation of ESI.
� CCA (Common Component Architecture):

Community effort to develop scientific SW components.
!Epetra/AztecOO is a CCA solver component.

� Public Release of Trilinos/Epetra:
!We will release Trilinos/Epetra this summer.
!Using LGPL for licensing.
!ML, IFPACK , AztecOO, Komplex, Anasazi , NOX will be (or are) going

through the same release process.

	Enhanced Incomplete Factorizations Algorithms for Solving Circuit Modeling Problems
	Collaborators in This Work
	Outline
	Trilinos Snapshot
	Basic Solver Strategy
	Motivations for This Approach
	Other Ideas Considered and Considering
	Preconditioned Krylov Solvers:Sources of Robustness Difficulties
	Ill-conditioned Factors
	Ill-conditioned Factors (cont)
	Estimating Preconditioner Accuracy
	Lower Bound on Inf-norm Condition Number
	Remedies for Ill-conditioned Factors
	A priori point diagonal perturbations
	Choosing thresholds
	AdaptiveIterate() Method
	Test Problems
	Platform: Beowulf Cluster
	Solvers
	Results (Time in secs)
	Adaptive Results: Hutch3 (last case above)
	Parallel Adaptive Results (Hutch3: 2 and 8 PEs)
	AdaptiveIterate Summary
	Trilinos Solver Framework (TSF)
	Sample TSF Class Category: TSFLinearOperator
	LinearOperator and LinearOperatorBase
	Some LinearOperator Implementations
	Other Primary TSF Classes
	Aggregate Operator Construction
	Aggregate Construction of Other Classes
	Block Preconditioner Tools
	Forming for using TSF
	Conclusions
	Trilinos and the Outside World

